Molecular architecture of heparin and heparan sulfate: Recent developments in solution structural studies*
نویسندگان
چکیده
The study of the relationship between the complex structures and numerous physiological functions of the glycosaminoglycans (GAGs) heparin and heparan sulfate (HS) has continued to thrive in the past decade. Though it is clear that the monosaccharide sequences of these polysaccharides must determine their ability to modulate the action of growth factors, morphogens, chemokines, cytokines, and many other extracellular proteins, the exact details of this dependence still prove elusive. Sequence determines the 3D structure of GAGs at more than one level; detailed sequences of highly sulfated regions may influence affinity for specific proteins in some cases, but in addition attention has been called to the importance of the length and spacing of these highly sulfated sequences, which are separated by unsulfated domains. Within the sulfated “S-domains”, the internal dynamics of the conformationally flexible iduronate pyranose ring have continued to interest NMR spectroscopists and molecular modelers. New studies of the relative degrees of flexibility of sulfated and unsulfated domains lead to an overall model of heparin/HS in which protein-binding, highly sulfated S-domains with well-defined conformations are separated by more flexible NA-domains.
منابع مشابه
Role of heparan sulfate in fibroblast growth factor signalling: a structural view.
Fibroblast growth factors (FGFs) are among the best-studied heparin-binding proteins, and heparan sulfate proteoglycans regulate FGF signalling by direct molecular association with FGF and its tyrosine kinase receptor, FGFR. Two recently determined crystal structures of FGF-FGFR-heparin complexes have provided new structural information on how heparin binds to FGF and FGFR, and lead to differen...
متن کاملTurkey intestine as a commercial source of heparin? Comparative structural studies of intestinal avian and mammalian glycosaminoglycans.
Heparin is a glycosaminoglycan (GAG) that is extracted primarily from porcine intestinal tissues and is widely used as a clinical anticoagulant. It is biosynthesized as a proteoglycan and stored exclusively in mast cells and is partially degraded to peptidoglycan and GAG on immunologically activated mast cell degranulation. In contrast, the structurally related heparan sulfate, is the polysacch...
متن کاملHyphenated techniques for the analysis of heparin and heparan sulfate.
The elucidation of the structure of glycosaminoglycan has proven to be challenging for analytical chemists. Molecules of glycosaminoglycan have a high negative charge and are polydisperse and microheterogeneous, thus requiring the application of multiple analytical techniques and methods. Heparin and heparan sulfate are the most structurally complex of the glycosaminoglycans and are widely dist...
متن کاملHeparin-protein interactions.
Heparin, a sulfated polysaccharide belonging to the family of glycosaminoglycans, has numerous important biological activities, associated with its interaction with diverse proteins. Heparin is widely used as an anticoagulant drug based on its ability to accelerate the rate at which antithrombin inhibits serine proteases in the blood coagulation cascade. Heparin and the structurally related hep...
متن کاملChemoenzymatic synthesis of heparan sulfate and heparin.
Heparan sulfate is a polysaccharide that plays essential physiological functions in the animal kingdom. Heparin, a highly sulfated form of heparan sulfate, is a widely prescribed anticoagulant drug worldwide. The heparan sulfate and heparin isolated from natural sources are highly heterogeneous mixtures differing in their polysaccharide chain lengths and sulfation patterns. The access to struct...
متن کامل